Suatu turunan fungsi f di x yang ditulis dengan notasi f’(x) dengan rumus: ![](https://i1.wp.com/images.plurk.com/77iLPiUbVCDEzhRwhE9N.png?resize=231%2C58&ssl=1)
Selain f’(x), fungsi turunan juga seringkali ditulis dengan y’,
, dan
Contoh:
Tentukan turunan pertama dari:
![](https://i1.wp.com/images.plurk.com/77iLPiUbVCDEzhRwhE9N.png?resize=231%2C58&ssl=1)
Selain f’(x), fungsi turunan juga seringkali ditulis dengan y’,
![](https://i0.wp.com/images.plurk.com/6Rd72fghfKiBlAOshE9N.png?resize=31%2C48&ssl=1)
![](https://i2.wp.com/images.plurk.com/7jY9aIAooP0sQa4vhE9N.png?resize=57%2C43&ssl=1)
Tentukan turunan pertama dari:
- f(x) = 2
- f(x) = 2x
- f(x) = 3x2 + 1
- f(x) =
Pembahasan:
![](https://i1.wp.com/images.plurk.com/1Zzzm5O6PQ8OSiivhE9N.png?resize=248%2C140&ssl=1)
![](https://i2.wp.com/images.plurk.com/3KbBhYLL3iQRjdcOhE9N.png?resize=257%2C268&ssl=1)
![](https://i0.wp.com/images.plurk.com/1TzEbYx5Jvb6ddNhhE9N.png?resize=317%2C379&ssl=1)
![](https://i2.wp.com/images.plurk.com/4FohvEqZxl5Vh2D0hE9N.png?resize=304%2C458&ssl=1)
Perhatikan pembahasan contoh soal di atas
![](https://i0.wp.com/images.plurk.com/7hed9KnPdIOW2EXyhE9N.png?resize=285%2C132&ssl=1)
Dari contoh di atas dapat ditarik kesimpulan bahwa:
maka
Untuk lebih lanjut berikut sifat-sifat turunan:![](https://i2.wp.com/images.plurk.com/1tCi000KoMFyo7kShE9N.png?resize=422%2C195&ssl=1)
A. Dalil-Dalil Turunan Fungsi Aljabar
1. Jika k merupakan suatu bilangan konstan maka untuk setiap x berlaku: ![](https://i0.wp.com/images.plurk.com/6h9GHPBVlW1TTo64hE9N.png?resize=107%2C32&ssl=1)
![](https://i0.wp.com/images.plurk.com/7IBLVLPWmb1Dyf1whE9N.png?resize=150%2C36&ssl=1)
![](https://i2.wp.com/images.plurk.com/1tCi000KoMFyo7kShE9N.png?resize=422%2C195&ssl=1)
A. Dalil-Dalil Turunan Fungsi Aljabar
![](https://i1.wp.com/images.plurk.com/lGsj8oFrLUkfL4qjhE9N.png?resize=178%2C31&ssl=1)
Pembuktian:
![](https://i2.wp.com/images.plurk.com/75YU6JIM3ih42Et3hE9N.png?resize=245%2C184&ssl=1)
Contoh:
- f(x) = 5, maka f’(x) = 0
- f(x) = 15, maka f’(x) = 0
- f(x) = n, maka f’(x) = 0
![](https://i0.wp.com/images.plurk.com/5HaG0lm53bcwqhvfhE9N.png?resize=270%2C39&ssl=1)
Penjelasan:
![](https://i2.wp.com/images.plurk.com/5HKYTxaMFHyDafTbhE9N.jpg?w=1090&ssl=1)
Contoh:
![](https://i0.wp.com/images.plurk.com/4sAcL6ldL71eN2dEhE9N.png?resize=149%2C107&ssl=1)
Pembahasan:
![](https://i0.wp.com/images.plurk.com/57EjFDDg2FwvFa5hhE9N.png?resize=172%2C100&ssl=1)
![](https://i2.wp.com/images.plurk.com/6nXOzp9VTWgbJ1x0hE9N.png?resize=195%2C194&ssl=1)
![](https://i0.wp.com/images.plurk.com/3KUjuLV5i6UQWAmwhE9N.png?resize=254%2C171&ssl=1)
3. Jika f dan g merupakan fungsi dan k adalah bilangan konstan, maka berlaku![](https://i2.wp.com/images.plurk.com/3sVd4tcM4sAcH25qhE9N.png?resize=217%2C28&ssl=1)
![](https://i2.wp.com/images.plurk.com/5HKYTxaMFHyDafTbhE9N.jpg?w=1090&ssl=1)
Subtitusikan nilai h = 0, sehingga semua suku yang mengandung h bernilai 0.
Contoh:
![](https://i0.wp.com/images.plurk.com/4sAcL6ldL71eN2dEhE9N.png?resize=149%2C107&ssl=1)
Pembahasan:
![](https://i0.wp.com/images.plurk.com/57EjFDDg2FwvFa5hhE9N.png?resize=172%2C100&ssl=1)
![](https://i2.wp.com/images.plurk.com/6nXOzp9VTWgbJ1x0hE9N.png?resize=195%2C194&ssl=1)
![](https://i0.wp.com/images.plurk.com/3KUjuLV5i6UQWAmwhE9N.png?resize=254%2C171&ssl=1)
3. Jika f dan g merupakan fungsi dan k adalah bilangan konstan, maka berlaku
![](https://i2.wp.com/images.plurk.com/3sVd4tcM4sAcH25qhE9N.png?resize=217%2C28&ssl=1)
Pembuktian:
![](https://i2.wp.com/images.plurk.com/uRGcH3RWLDbOrqB1hE9N.png?resize=262%2C160&ssl=1)
Dengan memperhatikan uraian pada nomor 2, maka
![](https://i1.wp.com/images.plurk.com/1SppMiMB7IKeHdqRhE9N.png?resize=158%2C36&ssl=1)
Contoh:
![](https://i1.wp.com/images.plurk.com/619u6JYpVOrA1BZ2hE9N.png?resize=164%2C101&ssl=1)
Pembahasan:
![](https://i2.wp.com/images.plurk.com/6FWwigTKgiGcl8sVhE9N.png?resize=164%2C83&ssl=1)
![](https://i1.wp.com/images.plurk.com/4SvHmhb8Tvl7sH3mhE9N.png?resize=195%2C188&ssl=1)
![](https://i0.wp.com/images.plurk.com/1L1jGjU6VNmknvGPhE9N.png?resize=511%2C185&ssl=1)
4. Jika f dan g dua fungsi dengan f’(x) dan g’(x) ada, sehingga
![](https://i1.wp.com/images.plurk.com/48Oqwz1vgatuPu3chE9N.png?resize=208%2C29&ssl=1)
![](https://i1.wp.com/images.plurk.com/2ejQOye5MEc5uQarhE9N.png?resize=210%2C32&ssl=1)
Pembuktian:![](https://i2.wp.com/images.plurk.com/2KMdCE46K3ucvdZfhE9N.png?resize=507%2C354&ssl=1)
Dengan cara yang sama, juga berlaku untuk pengurangan fungsi.
Contoh:
![Jika , nilai …. Diketahui , jika f’(6) = 40, maka nilai k adalah …. Tentukan turunan pertama dari: f(x) = (x – 2) (2x + 3)](https://i1.wp.com/images.plurk.com/3aW5YVCrtD5DOMxwhE9N.jpg?resize=1024%2C257&ssl=1)
![](https://i2.wp.com/images.plurk.com/2KMdCE46K3ucvdZfhE9N.png?resize=507%2C354&ssl=1)
Dengan cara yang sama, juga berlaku untuk pengurangan fungsi.
Contoh:
![Jika , nilai …. Diketahui , jika f’(6) = 40, maka nilai k adalah …. Tentukan turunan pertama dari: f(x) = (x – 2) (2x + 3)](https://i1.wp.com/images.plurk.com/3aW5YVCrtD5DOMxwhE9N.jpg?resize=1024%2C257&ssl=1)
Pembahasan:
![](https://i0.wp.com/images.plurk.com/5ctwUSFq6V0oF5GuhE9N.png?resize=266%2C157&ssl=1)
![](https://i1.wp.com/images.plurk.com/6LMtin1SJ2TZwzJbhE9N.png?resize=246%2C233&ssl=1)
![](https://i1.wp.com/images.plurk.com/589UG46c0fWRkHH9hE9N.png?resize=390%2C240&ssl=1)
![](https://i0.wp.com/images.plurk.com/5ctwUSFq6V0oF5GuhE9N.png?resize=266%2C157&ssl=1)
![](https://i1.wp.com/images.plurk.com/6LMtin1SJ2TZwzJbhE9N.png?resize=246%2C233&ssl=1)
![](https://i1.wp.com/images.plurk.com/589UG46c0fWRkHH9hE9N.png?resize=390%2C240&ssl=1)
5. Jika f dan g dua fungsi dengan f’(x) dan g’(x) ada, sehingga
berlaku ![](https://i1.wp.com/images.plurk.com/3PucEuvYv7taGqwnhE9N.png?resize=331%2C33&ssl=1)
![](https://i1.wp.com/images.plurk.com/5HxrHbjQlEzzPLikhE9N.png?resize=202%2C38&ssl=1)
![](https://i1.wp.com/images.plurk.com/3PucEuvYv7taGqwnhE9N.png?resize=331%2C33&ssl=1)
![](https://i1.wp.com/images.plurk.com/5HxrHbjQlEzzPLikhE9N.png?resize=202%2C38&ssl=1)
![](https://i1.wp.com/images.plurk.com/3PucEuvYv7taGqwnhE9N.png?resize=331%2C33&ssl=1)
![](https://i0.wp.com/images.plurk.com/11sBMvjTU67yf9VrhE9N.png?resize=445%2C44&ssl=1)
Contoh:
![](https://i0.wp.com/images.plurk.com/1K0vnCJZdwv0AMushE9N.png?resize=433%2C105&ssl=1)
- .
Jika turunan pertama fungsi tersebut adalah f’(x) dan f’(1) = 3. Maka nilai a adalah ….
Pembahasan:
![](https://i2.wp.com/images.plurk.com/22cf8e9eXbh5WUEjhE9N.png?resize=432%2C257&ssl=1)
![](https://i0.wp.com/images.plurk.com/3SCqBdXIGIlRYMOyhE9N.png?resize=442%2C234&ssl=1)
![](https://i2.wp.com/images.plurk.com/6dXJCNTNdYMFOiZBhE9N.png?w=1090&ssl=1)
(Ingat kembali materi eksponensial sifat perkalian pangkat)
![](https://i2.wp.com/images.plurk.com/2rP0vQyqJBPnwk1DhE9N.png?resize=479%2C108&ssl=1)
(Jumlahkan koefisien yang bersuku sama)
![](https://i2.wp.com/images.plurk.com/jNB3vsX6jTbMx2hDhE9N.png?resize=414%2C377&ssl=1)
![](https://i1.wp.com/images.plurk.com/2ARGOrooO8LFsLKlhE9N.png?resize=503%2C456&ssl=1)
6. Jika f dan g dua fungsi dengan f’(x) dan g’(x) ada, sehingga
![](https://i0.wp.com/images.plurk.com/1RyUPVmGMuoGON11hE9N.png?resize=124%2C55&ssl=1)
![](https://i2.wp.com/images.plurk.com/1NaQO65qmFgaqgUhhE9N.png?resize=284%2C61&ssl=1)
![](https://i0.wp.com/images.plurk.com/1RyUPVmGMuoGON11hE9N.png?resize=124%2C55&ssl=1)
![](https://i2.wp.com/images.plurk.com/1NaQO65qmFgaqgUhhE9N.png?resize=284%2C61&ssl=1)
![](https://i1.wp.com/images.plurk.com/4GCd9JiRmEsSRpy4hE9N.png?resize=335%2C49&ssl=1)
Contoh:
Tentukan turunan pertama dari fungsi-fungsi berikut:
![](https://i1.wp.com/images.plurk.com/2azE7gsZAzY7UNVbhE9N.png?resize=218%2C130&ssl=1)
Pembahasan:
![](https://i2.wp.com/images.plurk.com/1FJP3duwUvV2sH0BhE9N.png?resize=394%2C367&ssl=1)
![](https://i2.wp.com/images.plurk.com/2YihLYA6YQGfcy8MhE9N.png?resize=389%2C382&ssl=1)
![](https://i0.wp.com/images.plurk.com/7MBwOInUCTXWXgn0hE9N.png?resize=413%2C212&ssl=1)
![](https://i0.wp.com/images.plurk.com/6m22Bc8P9lreW46HhE9N.png?w=1090&ssl=1)
7. Turunan Fungsi Komposisi
Jika
![](https://i1.wp.com/images.plurk.com/5iQCCysUUk5W72U0hE9N.png?resize=400%2C31&ssl=1)
Contoh:
Tentukan turunan dari
![](https://i0.wp.com/images.plurk.com/5AUzWG0cUP7UJtEyhE9N.png?resize=377%2C234&ssl=1)
Pembahasan:
Tentukan turunan dari
![](https://i0.wp.com/images.plurk.com/5AUzWG0cUP7UJtEyhE9N.png?resize=377%2C234&ssl=1)
Pembahasan:
![](https://i1.wp.com/images.plurk.com/3hu8gsfYuje5wyNghE9N.png?resize=396%2C305&ssl=1)
![](https://i2.wp.com/images.plurk.com/3p2nn8m7haVHRItuhE9N.png?resize=631%2C348&ssl=1)
![](https://i1.wp.com/images.plurk.com/1FsaIAIqY1WOsiYjhE9N.png?resize=577%2C436&ssl=1)
![](https://i2.wp.com/images.plurk.com/2cQwjhE0UF82TjPOhE9N.png?resize=432%2C458&ssl=1)
![](https://i2.wp.com/images.plurk.com/121yafWF70G3cPADhE9N.png?resize=416%2C393&ssl=1)
![](https://i0.wp.com/images.plurk.com/4kwAtI3zeCiZia83hE9N.png?resize=789%2C257&ssl=1)
![](https://i1.wp.com/images.plurk.com/3mxWLt61ZhnBxXTqhE9N.png?resize=532%2C333&ssl=1)
Oke secara garis besar pembahasan tentang turunan fungsi aljabar cukup sederhana, tinggal kita fahami aturan-aturannya.
semoga tulisan diatas dapat membantu sobat semua untuk memahami lebih dalam lagi tentang turunan fungsi aljabar....
jika ada pertanyaan atau masukan silahkan isi dikolom komentar....
selamat belajar dan tetap semangat!!!!!
mantaapp kaakk
ReplyDeleteTerimakasih atas kunjungannya
DeleteJangan lupa klik tombol ikuti,
Untuk dapat kabar post terbaru
Senang bisa membantu dan semangat belajar...
AMPUH UNTUK OBAT TIDUR
ReplyDeleteありがとうございました足ファさん
Nice post, izin repost dengan menyertakan sumber
ReplyDeleteSalam Kenal Gan