Suatu turunan fungsi f di x yang ditulis dengan notasi f’(x) dengan rumus: ![](https://i1.wp.com/images.plurk.com/77iLPiUbVCDEzhRwhE9N.png?resize=231%2C58&ssl=1)
Selain f’(x), fungsi turunan juga seringkali ditulis dengan y’,
, dan
Contoh:
Tentukan turunan pertama dari:
![](https://i1.wp.com/images.plurk.com/77iLPiUbVCDEzhRwhE9N.png?resize=231%2C58&ssl=1)
Selain f’(x), fungsi turunan juga seringkali ditulis dengan y’,
![](https://i0.wp.com/images.plurk.com/6Rd72fghfKiBlAOshE9N.png?resize=31%2C48&ssl=1)
![](https://i2.wp.com/images.plurk.com/7jY9aIAooP0sQa4vhE9N.png?resize=57%2C43&ssl=1)
Tentukan turunan pertama dari:
- f(x) = 2
- f(x) = 2x
- f(x) = 3x2 + 1
- f(x) =
Pembahasan:
![](https://i1.wp.com/images.plurk.com/1Zzzm5O6PQ8OSiivhE9N.png?resize=248%2C140&ssl=1)
![](https://i2.wp.com/images.plurk.com/3KbBhYLL3iQRjdcOhE9N.png?resize=257%2C268&ssl=1)
![](https://i0.wp.com/images.plurk.com/1TzEbYx5Jvb6ddNhhE9N.png?resize=317%2C379&ssl=1)
![](https://i2.wp.com/images.plurk.com/4FohvEqZxl5Vh2D0hE9N.png?resize=304%2C458&ssl=1)
Perhatikan pembahasan contoh soal di atas
![](https://i0.wp.com/images.plurk.com/7hed9KnPdIOW2EXyhE9N.png?resize=285%2C132&ssl=1)
Dari contoh di atas dapat ditarik kesimpulan bahwa:
maka
Untuk lebih lanjut berikut sifat-sifat turunan:![](https://i2.wp.com/images.plurk.com/1tCi000KoMFyo7kShE9N.png?resize=422%2C195&ssl=1)
A. Dalil-Dalil Turunan Fungsi Aljabar
1. Jika k merupakan suatu bilangan konstan maka untuk setiap x berlaku: ![](https://i0.wp.com/images.plurk.com/6h9GHPBVlW1TTo64hE9N.png?resize=107%2C32&ssl=1)
![](https://i0.wp.com/images.plurk.com/7IBLVLPWmb1Dyf1whE9N.png?resize=150%2C36&ssl=1)
![](https://i2.wp.com/images.plurk.com/1tCi000KoMFyo7kShE9N.png?resize=422%2C195&ssl=1)
A. Dalil-Dalil Turunan Fungsi Aljabar
![](https://i1.wp.com/images.plurk.com/lGsj8oFrLUkfL4qjhE9N.png?resize=178%2C31&ssl=1)
Pembuktian:
![](https://i2.wp.com/images.plurk.com/75YU6JIM3ih42Et3hE9N.png?resize=245%2C184&ssl=1)
Contoh:
- f(x) = 5, maka f’(x) = 0
- f(x) = 15, maka f’(x) = 0
- f(x) = n, maka f’(x) = 0
![](https://i0.wp.com/images.plurk.com/5HaG0lm53bcwqhvfhE9N.png?resize=270%2C39&ssl=1)
Penjelasan:
![](https://i2.wp.com/images.plurk.com/5HKYTxaMFHyDafTbhE9N.jpg?w=1090&ssl=1)
Contoh:
![](https://i0.wp.com/images.plurk.com/4sAcL6ldL71eN2dEhE9N.png?resize=149%2C107&ssl=1)
Pembahasan:
![](https://i0.wp.com/images.plurk.com/57EjFDDg2FwvFa5hhE9N.png?resize=172%2C100&ssl=1)
![](https://i2.wp.com/images.plurk.com/6nXOzp9VTWgbJ1x0hE9N.png?resize=195%2C194&ssl=1)
![](https://i0.wp.com/images.plurk.com/3KUjuLV5i6UQWAmwhE9N.png?resize=254%2C171&ssl=1)
3. Jika f dan g merupakan fungsi dan k adalah bilangan konstan, maka berlaku![](https://i2.wp.com/images.plurk.com/3sVd4tcM4sAcH25qhE9N.png?resize=217%2C28&ssl=1)
![](https://i2.wp.com/images.plurk.com/5HKYTxaMFHyDafTbhE9N.jpg?w=1090&ssl=1)
Subtitusikan nilai h = 0, sehingga semua suku yang mengandung h bernilai 0.
Contoh:
![](https://i0.wp.com/images.plurk.com/4sAcL6ldL71eN2dEhE9N.png?resize=149%2C107&ssl=1)
Pembahasan:
![](https://i0.wp.com/images.plurk.com/57EjFDDg2FwvFa5hhE9N.png?resize=172%2C100&ssl=1)
![](https://i2.wp.com/images.plurk.com/6nXOzp9VTWgbJ1x0hE9N.png?resize=195%2C194&ssl=1)
![](https://i0.wp.com/images.plurk.com/3KUjuLV5i6UQWAmwhE9N.png?resize=254%2C171&ssl=1)
3. Jika f dan g merupakan fungsi dan k adalah bilangan konstan, maka berlaku
![](https://i2.wp.com/images.plurk.com/3sVd4tcM4sAcH25qhE9N.png?resize=217%2C28&ssl=1)
Pembuktian:
![](https://i2.wp.com/images.plurk.com/uRGcH3RWLDbOrqB1hE9N.png?resize=262%2C160&ssl=1)
Dengan memperhatikan uraian pada nomor 2, maka
![](https://i1.wp.com/images.plurk.com/1SppMiMB7IKeHdqRhE9N.png?resize=158%2C36&ssl=1)
Contoh:
![](https://i1.wp.com/images.plurk.com/619u6JYpVOrA1BZ2hE9N.png?resize=164%2C101&ssl=1)
Pembahasan:
![](https://i2.wp.com/images.plurk.com/6FWwigTKgiGcl8sVhE9N.png?resize=164%2C83&ssl=1)
![](https://i1.wp.com/images.plurk.com/4SvHmhb8Tvl7sH3mhE9N.png?resize=195%2C188&ssl=1)
![](https://i0.wp.com/images.plurk.com/1L1jGjU6VNmknvGPhE9N.png?resize=511%2C185&ssl=1)
4. Jika f dan g dua fungsi dengan f’(x) dan g’(x) ada, sehingga
![](https://i1.wp.com/images.plurk.com/48Oqwz1vgatuPu3chE9N.png?resize=208%2C29&ssl=1)
![](https://i1.wp.com/images.plurk.com/2ejQOye5MEc5uQarhE9N.png?resize=210%2C32&ssl=1)
Pembuktian:![](https://i2.wp.com/images.plurk.com/2KMdCE46K3ucvdZfhE9N.png?resize=507%2C354&ssl=1)
Dengan cara yang sama, juga berlaku untuk pengurangan fungsi.
Contoh:
![Jika , nilai …. Diketahui , jika f’(6) = 40, maka nilai k adalah …. Tentukan turunan pertama dari: f(x) = (x – 2) (2x + 3)](https://i1.wp.com/images.plurk.com/3aW5YVCrtD5DOMxwhE9N.jpg?resize=1024%2C257&ssl=1)
![](https://i2.wp.com/images.plurk.com/2KMdCE46K3ucvdZfhE9N.png?resize=507%2C354&ssl=1)
Dengan cara yang sama, juga berlaku untuk pengurangan fungsi.
Contoh:
![Jika , nilai …. Diketahui , jika f’(6) = 40, maka nilai k adalah …. Tentukan turunan pertama dari: f(x) = (x – 2) (2x + 3)](https://i1.wp.com/images.plurk.com/3aW5YVCrtD5DOMxwhE9N.jpg?resize=1024%2C257&ssl=1)
Pembahasan:
![](https://i0.wp.com/images.plurk.com/5ctwUSFq6V0oF5GuhE9N.png?resize=266%2C157&ssl=1)
![](https://i1.wp.com/images.plurk.com/6LMtin1SJ2TZwzJbhE9N.png?resize=246%2C233&ssl=1)
![](https://i1.wp.com/images.plurk.com/589UG46c0fWRkHH9hE9N.png?resize=390%2C240&ssl=1)
![](https://i0.wp.com/images.plurk.com/5ctwUSFq6V0oF5GuhE9N.png?resize=266%2C157&ssl=1)
![](https://i1.wp.com/images.plurk.com/6LMtin1SJ2TZwzJbhE9N.png?resize=246%2C233&ssl=1)
![](https://i1.wp.com/images.plurk.com/589UG46c0fWRkHH9hE9N.png?resize=390%2C240&ssl=1)
5. Jika f dan g dua fungsi dengan f’(x) dan g’(x) ada, sehingga
berlaku ![](https://i1.wp.com/images.plurk.com/3PucEuvYv7taGqwnhE9N.png?resize=331%2C33&ssl=1)
![](https://i1.wp.com/images.plurk.com/5HxrHbjQlEzzPLikhE9N.png?resize=202%2C38&ssl=1)
![](https://i1.wp.com/images.plurk.com/3PucEuvYv7taGqwnhE9N.png?resize=331%2C33&ssl=1)
![](https://i1.wp.com/images.plurk.com/5HxrHbjQlEzzPLikhE9N.png?resize=202%2C38&ssl=1)
![](https://i1.wp.com/images.plurk.com/3PucEuvYv7taGqwnhE9N.png?resize=331%2C33&ssl=1)
![](https://i0.wp.com/images.plurk.com/11sBMvjTU67yf9VrhE9N.png?resize=445%2C44&ssl=1)
Contoh:
![](https://i0.wp.com/images.plurk.com/1K0vnCJZdwv0AMushE9N.png?resize=433%2C105&ssl=1)
- .
Jika turunan pertama fungsi tersebut adalah f’(x) dan f’(1) = 3. Maka nilai a adalah ….
Pembahasan:
![](https://i2.wp.com/images.plurk.com/22cf8e9eXbh5WUEjhE9N.png?resize=432%2C257&ssl=1)
![](https://i0.wp.com/images.plurk.com/3SCqBdXIGIlRYMOyhE9N.png?resize=442%2C234&ssl=1)
![](https://i2.wp.com/images.plurk.com/6dXJCNTNdYMFOiZBhE9N.png?w=1090&ssl=1)
(Ingat kembali materi eksponensial sifat perkalian pangkat)
![](https://i2.wp.com/images.plurk.com/2rP0vQyqJBPnwk1DhE9N.png?resize=479%2C108&ssl=1)
(Jumlahkan koefisien yang bersuku sama)
![](https://i2.wp.com/images.plurk.com/jNB3vsX6jTbMx2hDhE9N.png?resize=414%2C377&ssl=1)
![](https://i1.wp.com/images.plurk.com/2ARGOrooO8LFsLKlhE9N.png?resize=503%2C456&ssl=1)
6. Jika f dan g dua fungsi dengan f’(x) dan g’(x) ada, sehingga
![](https://i0.wp.com/images.plurk.com/1RyUPVmGMuoGON11hE9N.png?resize=124%2C55&ssl=1)
![](https://i2.wp.com/images.plurk.com/1NaQO65qmFgaqgUhhE9N.png?resize=284%2C61&ssl=1)
![](https://i0.wp.com/images.plurk.com/1RyUPVmGMuoGON11hE9N.png?resize=124%2C55&ssl=1)
![](https://i2.wp.com/images.plurk.com/1NaQO65qmFgaqgUhhE9N.png?resize=284%2C61&ssl=1)
![](https://i1.wp.com/images.plurk.com/4GCd9JiRmEsSRpy4hE9N.png?resize=335%2C49&ssl=1)
Contoh:
Tentukan turunan pertama dari fungsi-fungsi berikut:
![](https://i1.wp.com/images.plurk.com/2azE7gsZAzY7UNVbhE9N.png?resize=218%2C130&ssl=1)
Pembahasan:
![](https://i2.wp.com/images.plurk.com/1FJP3duwUvV2sH0BhE9N.png?resize=394%2C367&ssl=1)
![](https://i2.wp.com/images.plurk.com/2YihLYA6YQGfcy8MhE9N.png?resize=389%2C382&ssl=1)
![](https://i0.wp.com/images.plurk.com/7MBwOInUCTXWXgn0hE9N.png?resize=413%2C212&ssl=1)
![](https://i0.wp.com/images.plurk.com/6m22Bc8P9lreW46HhE9N.png?w=1090&ssl=1)
7. Turunan Fungsi Komposisi
Jika
![](https://i1.wp.com/images.plurk.com/5iQCCysUUk5W72U0hE9N.png?resize=400%2C31&ssl=1)
Contoh:
Tentukan turunan dari
![](https://i0.wp.com/images.plurk.com/5AUzWG0cUP7UJtEyhE9N.png?resize=377%2C234&ssl=1)
Pembahasan:
Tentukan turunan dari
![](https://i0.wp.com/images.plurk.com/5AUzWG0cUP7UJtEyhE9N.png?resize=377%2C234&ssl=1)
Pembahasan:
![](https://i1.wp.com/images.plurk.com/3hu8gsfYuje5wyNghE9N.png?resize=396%2C305&ssl=1)
![](https://i2.wp.com/images.plurk.com/3p2nn8m7haVHRItuhE9N.png?resize=631%2C348&ssl=1)
![](https://i1.wp.com/images.plurk.com/1FsaIAIqY1WOsiYjhE9N.png?resize=577%2C436&ssl=1)
![](https://i2.wp.com/images.plurk.com/2cQwjhE0UF82TjPOhE9N.png?resize=432%2C458&ssl=1)
![](https://i2.wp.com/images.plurk.com/121yafWF70G3cPADhE9N.png?resize=416%2C393&ssl=1)
![](https://i0.wp.com/images.plurk.com/4kwAtI3zeCiZia83hE9N.png?resize=789%2C257&ssl=1)
![](https://i1.wp.com/images.plurk.com/3mxWLt61ZhnBxXTqhE9N.png?resize=532%2C333&ssl=1)
Oke secara garis besar pembahasan tentang turunan fungsi aljabar cukup sederhana, tinggal kita fahami aturan-aturannya.
semoga tulisan diatas dapat membantu sobat semua untuk memahami lebih dalam lagi tentang turunan fungsi aljabar....
jika ada pertanyaan atau masukan silahkan isi dikolom komentar....
selamat belajar dan tetap semangat!!!!!